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An iterative domain decomposition method is proposed for numerical analysis of 3-Dimensional (3D) linear magnetostatic problems 

taking the magnetic vector potential as an unknown function.  The iterative domain decomposition method is combined with the 

Preconditioned Conjugate Gradient (PCG) procedure and the Hierarchical Domain Decomposition Method (HDDM) which is adopted 

in parallel computing.  Our previously employed preconditioner was the Neumann-Neumann (NN) preconditioner.  Numerical results 

showed that the method was only effective for smaller problems.  In this paper, we consider its improvement with the Balancing 

Domain Decomposition DIAGonal scaling (BDD-DIAG) preconditioner. Specially, the coarse matrix solver is changed to an iterative 

solver and numerical results show that the incomplete CG iterative solver like CG(10) is more effective than the standard approach. 

 
Index Terms— Domain decomposition method, Large-scale magnetostatic problems, Preconditioning, The coarse problem  

 

I. INTRODUCTION 

HIS DOCUMENT deals with a coarse matrix iterative solver 

for magnetostatic domain decomposition analysis.  

II. THE  INTERFACE PROBLEM 

The present section assumes that the magnetic reluctivity 𝜈 

is given for simplicity.  Then, the linear magnetostaic problem 

(1) without the Coulomb gauge condition is considered on a 

polyhedral domain Ω with the boundary 𝜕Ω : 
 

𝑟𝑜𝑡(𝜈 𝑟𝑜𝑡 𝐴) = 𝐽     𝑖𝑛 Ω,                (1a) 

 

𝐴 × 𝑛 = 0                 𝑜𝑛 𝛤𝐸,                     (1b) 

 
(𝜈 𝑟𝑜𝑡 𝐴) × 𝑛 = 0   𝑜𝑛 𝛤𝑁,                    (1c) 

 

where A is the magnetic vector potential and J is an electric 

current density. Assume that the boundary ∂Ω consists of two 

disjoint parts Γ𝐸  and Γ𝑁 . Let 𝑛  be the unit outward normal 

vector to the boundary.We then consider a non-overlapping 

partition of the domain Ω , consisting of subdomains, also 

called substructures {Ω(𝑖)}
𝑖=1,…𝑁

.  We also define the interface 

as  

 

𝛤 ≡ ⋃ 𝜕Ω(𝑖) ⧵ 𝛤𝐸
𝑁
𝑖=1 ,                             (2) 

 

where 𝑁 is the number of subdomains. 

For the given ν, the finite element discretization of (1) gives 

a symmetric linear system.  The Degrees of Freedom (DOF) 

inside subdomains are eliminated in parallel by a static 

condensation [1]. We are then left with a linear system 

involving only DOF on Γ.  If a local vector (𝑢
(𝑖)

) in Ω(𝑖) is 

divided into two subvectors; DOF ( 𝑢𝐼
(𝑖)

)  corresponding to 

edges inside Ω(𝑖) and DOF (𝑢𝐵
(𝑖)

) on 𝜕Ω(𝑖) ⧵ 𝛤𝐸 ,  respectively, 

the local stiffness matrix of 𝐾(𝑖) can be written as  

 

𝐾(𝑖) = (
𝐾𝐼𝐼

(𝑖)
𝐾𝐼𝐵

(𝑖)

𝐾𝐼𝐵
(𝑖)𝑇 𝐾𝐵𝐵

(𝑖)
).                      (3) 

 

 

  

Let 𝑊(𝑖) be the space of interface DOF for the subdomain 

Ω(𝑖) and 𝑊 be the space of all DOF on Γ.  After eliminating 

DOF inside subdomains, the original problem reduces to a 
problem with a smaller dimension; 

 

𝑆𝑢𝐵 = 𝑔 ,      𝑢𝐵 ∈ 𝑊 ,                      (4) 

 

where 𝑆 = ∑ 𝑅𝐵
(𝑖)

𝑆(𝑖)𝑅𝐵
(𝑖)𝑇𝑁

𝑖=1  is the global Schur complement 

matrix related to Γ and 𝑔 is the resultant right hand side vector. 

We define the operators: 

 

𝑆: 𝑊 → 𝑊,   𝑆(𝑖): 𝑊(𝑖) → 𝑊(𝑖), 𝑅𝐵
(𝑖)

: 𝑊(𝑖) → 𝑊 . 
 

𝑅𝐵
(𝑖)𝑇

 is the transpose of 𝑅𝐵
(𝑖)

. The local Schur complement 𝑆(𝑖) 

is defined as 

 

𝑆(𝑖) ≡ 𝐾𝐵𝐵
(𝑖)

− 𝐾𝐼𝐵
(𝑖)𝑇𝐾𝐼𝐼

(𝑖)†𝐾𝐼𝐵
(𝑖)

 .            (5) 

 

Here, (𝐾𝐼𝐼
(𝑖))

†
 denotes the generalized inverse of 𝐾𝐼𝐼

(𝑖)
 [1]. The 

problem (4) is solved by a PCG method which requires to 
solve the following auxiliary problem: 

 

𝑀𝑧 = 𝑟                                                  (6) 

 

where 𝑟 is the residual of (4) and 𝑀 is a preconditioner.  In the 

preliminary research for a perturbation problem [2], we tried 

to implement the Neumann-Neumann (NN) preconditioner 

without a coarse problem.  Due to the absence of the coarse 

problem, its effectiveness was restricted to problems with 

small number of subdomains. BDD; the Neumann-Neumann 

preconditioner with a coarse problem, or BDD-DIAG; the 
simplified diagonal scaling preconditioner with a coarse 

problem, is the present challenge of this research. 

T 



III. CHANGE OF THE COARSE MATRIX SOLVERS 

In this section, change of the coarse matrix solver is 

mentioned. To solve the coarse problems in Step 1 and Step 5 

of Chapter 5 [3], parallel skyline solvers were used in [4]-[6]. 

However, in magnetostatic analysis, the coarse matrix 
becomes singular and the paralell skyline solver can not be 

used. In this paper, we use the library Lis [7] as follows: 

Compressed Sparse Row (CSR) format is used. CG with no 

preconditioner is also used. The tolerance value is set to be 

1.0e-03. These are standard conditions. Exceptional cases are 

separately mentioned. The initial vector for the iterative solver 

is  always zero, which is a default value in the Lis library. 

Generally these solvers require much computaional time at 

present. The shortnening of computaional time is absolutely 

necessary, which remains a future problem in this paper. The 

format change to Lis from the parallel skyline solver is 

relatively easy because the CSR format is familiar with the 
skyline format.   

Ⅳ．NUMERICAL RESULTS 

A.  A shaft Problem  

An axi-symmetric shaft model comes from Fuji Electric 

Co., Ltd. . As a preliminary result, we compared convergence 

histories with the simplified diagonal scaling (diag) and 

without preconditioning (none) for a simple shaft perturbed 
problem [2] (the perturbation parameter; epsilon = 10-4 ) by 

one core computation on the first author’s PC (Let’s note with 

Cygwin). Numbers of parts, subdomains and elements are 1, 

130 and 13,389, respectively. The interface DOF is 4,828. The 

regularized value 𝛼   was suitably set to be 10-5 [2]. An 

iterative solver (ICCG with a shift value) [2] was used as the 

subdomain solver. Iteration counts until the 10-5 relative 

residual were 103 for the simplified diagonal scaling (diag) 

and 1,885 without preconditioning (none), respectively. diag 

was 18 times faster than none in iteration counts and 13 times 

faster in computational time. Very interestingly, BDD-DIAG 

by the second author showed almost the same iteration count 
as diag. On the other hand, the original BDD and NN 

preconditioners produced no effective results. Two important 

remarks should be added. In these numerical results, to 

prepare preconditioners of (6), the global Schur complement 

matrix was constructed by following the library TryDDM in 

[8] and using the same global Schur complement matrix, the 

singular problem  without the perturbation term was also 

solved by BDD-DIAG, whose iteration counts were again 

almost the same as diag. This may mean that the role of basic 

preconditioners (diag vs. NN) is very important and produces 

a big difference between BDD-DIAG and BDD.  Furthermore, 

Table 1 shows change of iteration counts depending on the Lis  
solver options.  For example, CG(10) means that upper limit of 

the CG iteration count of the coarse problem is limited to 10.  

B.  The TEAM Workshop Problem 20 

We have compared convergence histories with the 

simplified diagonal scaling (diag), BDD-DIAG and without 
preconditioning (none) for the TEAM Workshop Problem 20 

[9] (the perturbation parameter; epsilon = 0 ) by one core 

computation on Intel Core i5-4460 with CentOS. Numbers of  
 

TABLE I 

ITERATION COUNTS FOR SEVERAL OPTIONS OF THE LIS SOLVER 

Options 
Iteration 

Counts 
Explanations 

diag 103 
Default option of the solver in 

ADVENTURE_Magnetic 

CG (10) 103 
Upper limit of the CG iteration 

count is limited to 10. 

CG (30) 104 
Upper limit of the CG iteration 

count is limited to 30. 

CG (1.0e-03 

convergence ) 
121 Relative residual 1.0e-03 is kept. 

 

parts, subdomains, elements and the interface DOF are shown 

in [3]. The regularized value 𝛼 and others are the same as in 
the previous example. Very interestingly, BDD-DIAG by the 

secomd author again shows almost the same iteration count as 

diag. On the other hand, the original BDD and NN 

preconditioners also produced no effective results.  

 

C.  An IEEJ Model 

We have also compared convergence histories with the 

simplified diagonal scaling (diag), BDD-DIAG and without 

preconditioning (none) for an IEEJ model established by IEEJ 

(the perturbation parameter; epsilon = 0) by one core 

computation on Intel Core i5-4460 with CentOS. It is noted 

that this model includes the natural boundary condition (1c) 

but that the previous examples only include the essential 

boundary condition (1b). 

 Numbers of parts, subdomains, elements and the interface 

DOF are shown in [3]. Others are the same as in the previous 

examples. Very interestingly, BDD-DIAG again shows almost 

the similar iteration count as diag. On the other hand, the 
original BDD and NN preconditioners also produced no 

effective results.  

REFERENCES 

[1]  J. Mandel, “Balancing domain decomposition,”  Communications 
on Numerical Methods in Engineering 9, pp. 233-241 (1993) 

[2] H. Kanayama, A.M.M. Mukaddes, M. Ogino, and  S. Sugimoto, 
“A domain decomposition preconditioner for large scale 3-D 

magnetostatic analysis,” Proceedings of Joint Technical Meeting 
on Static Apparatus and Rotating Machinery, IEEJ, pp. 21-26 

(2005) 
[3] H. Kanayama, M. Ogino, S. Sugimoto, K. Yodo, and H. Zheng, 

“On the coarse matrix solver of preconditioners for msgnetostattic 
domain decomposition analysis,” IEEJ, 137-3, pp.179-185 (2017) 

[4] M.Ogino, R.Shioya, and H.Kanayama, “An inexact balancing 
preconditioner for large-scale structural analysis,” Journal of 

Computational Science and Technology, 2-1, pp.150-161 (2008) 
[5] A.M.M.Mukaddes, M. M.Ogino, H.Kanayama and R.Shioya, “A 

scalable balancing domain decomposition based preconditioner 
for large scale heat transfer problems,” JSME International 

Journal,  pp.533-540 (2006) 
[6] Q.Yao, H.Kanayama, H.Notsu and M.Ogino, “Balancing domain 

decomposition for non-stationary incompressible flow problems 
using a characteristic-curve method,” Journal of Computational 

Science and Technology, 4(2), pp.121-135 (2010) 
[7] The Scalable Software Infrastructure Project, Lis: Library of 

Iterative Solvers for Linear Systems, Version 1.5.66  (2016) 
[8] M.Ogino and R.Shioya, “Development of a library of iterative 

solvers based on the domain decomposition method,” A keynote 
presentation in ICCM 2015, Auckland, NZ, (2015) 

[9] TEAM Workshop Problem 20, 
http://www.compumag.org/jsite/team.html  


